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We show analytically that the heat conductivity of oscillator chains diverges with system size N as N1/3,
which is the same as for one-dimensional fluids. For long cylinders, we use the hydrodynamic equations for a
crystal in one dimension. This is appropriate for stiff systems such as nanotubes, where the eventual crossover
to a fluid only sets in at unrealistically large N. Despite the extra equation compared to a fluid, the scaling of
the heat conductivity is unchanged. For strictly one-dimensional chains, we show that the dynamic equations
are those of a fluid at all length scales even if the static order extends to very large N. The discrepancy between
our results and numerical simulations on Fermi-Pasta-Ulam chains is discussed.
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I. INTRODUCTION

When a small temperature gradient is applied across a
system, the heat current that flows through it is expected to
follow Fourier’s law, j=−��T �1�. However, for one-
dimensional systems there are numerous �2� examples of
systems where numerical simulations �3–13� or exact ana-
lytical results �14–16� have shown that Fourier’s law breaks
down. The thermal conductivity � is observed to be anoma-
lous, i.e., dependent on the system size and divergent in the
thermodynamic limit. Despite the existence �16� of an ana-
lytical renormalization group �RG� prediction for the behav-
ior of �, there is still considerable controversy about whether
the theory applies to chains of stiff oscillators, where the
particles form a lattice to an excellent approximation. Since
this is the appropriate description for nanotubes, this class of
systems is of great topical interest. An understanding of �
also has broader implications, since other transport coeffi-
cients can also be anomalous in low dimensional systems
�16�.

Numerical �4–13� and analytical �9,11,13,16–18� studies
show ��N� for various one-dimensional systems, where N
is the size of the system and ��0. A RG analysis �16� has
shown that for one-dimensional nonintegrable systems with
momentum conservation, � has the universal value of 1 /3,
and that without momentum conservation the conductivity is
normal �i.e., �=0�. This result was derived using the hydro-
dynamic equations of a normal fluid. Simulations on one-
dimensional hard particle gases have yielded a wide range of
values for � �5,6,15�. This is because very large system sizes
are needed before the large N behavior is reached, presum-
ably because of the limited phase space accessed in one-
dimensional elastic collisions. This problem has been cir-
cumvented by using a random collision �RC� model �8�,
where convergence to the asymptotic regime is seen for
small N. Recent simulations measuring energy diffusion in
hard particle systems also suggest �7� that �=1/3, although
this is obtained indirectly and the issue is not completely
settled.

In marked contrast to these results, chains of nonlinear
oscillators such as Fermi-Pasta-Ulam �FPU� chains �19� and
their variants consistently show numerical results that dis-
agree with the RG prediction �9–12�. Varying parameters

within a given model gives different values for � �9�, but
they generally lie between 0.37 and 0.44 �3,9–11� with oc-
casional exceptions. This is contrary to the RG prediction,
but is compatible with the result from a mode-coupling
analysis that yields �=2/5 �9,13�. These numerical results
have led to suggestions that there are �at least� two univer-
sality classes for heat conduction in one-dimensional mo-
mentum conserving systems �10,13�, and that the “fluidlike”
RG analysis is not appropriate for oscillator chains, which
are better described as a crystal with small fluctuations in
particle positions. We note, however, that direct �20� and
indirect �21� numerical simulations on single walled carbon
nanotubes yield �=0.32 and 0.33, respectively.

Although any one-dimensional system will eventually
renormalize to fluidlike behavior at sufficiently long length
scales, for stiff oscillator chains the crystalline order persists
to very large N. Since the hydrodynamic equations for
a crystal are different from those for a fluid, the large N
behavior for such chains could be different from the fluid
prediction.

In this paper, we show that this is not the case: � should
be 1/3 even for stiff oscillator chains. In this light, the nu-
merical results on FPU chains are probably due to the well-
known difficulties with equilibrating them �19,22�, necessi-
tating extremely large N before the asymptotic behavior is
seen.

In Sec. II, we first argue that the earlier RG analysis �16�
applies to chains as well as gases. This result is surprising in
view of the fact that the standard hydrodynamic description
of crystals introduces extra degrees of freedom for broken
symmetries �23,24�, and is peculiar to one-dimensional
chains with single-well interparticle interaction potentials.
We then derive the hydrodynamic equations for chains with
multiple-well interaction potentials and for quasi one-
dimensional systems such as tubes �25�. There are four equa-
tions instead of three for a fluid, because of the extra degree
of freedom corresponding to the broken symmetry. We show
that these modified hydrodynamic equations also yield
�=1/3. In Sec. III, we elucidate the discrepancy between
numerical results on FPU chains and the analytical predic-
tion by performing simulations on FPU chains with colli-
sions, which interpolate continuously between the RC model
and pure �collisionless� FPU chains. As we tune parameters
to move towards pure FPU chains, a new intermediate length
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scale regime emerges and increases in range, while leaving
the large N scaling of � unchanged. This corroborates the
analytical prediction that �=1/3 asymptotically. but shows
that this will be seen at unusually large N for pure FPU
chains. Finally, in Sec. IV, we discuss the applicability of
these predictions to physical systems.

II. ONE-DIMENSIONAL HYDRODYNAMICS

The RG analysis discussed earlier �16� uses the hydrody-
namic equations for a one-dimensional fluid �23,26�

�t� + �xg = 0,

�tg + �x�gv� = − �xp + ��x
2v ,

�t� + �x��� + p�v� = ��x
2T + ����xv�2 + v�x

2v� , �1�

where �, g, and � are the local mass, momentum, and energy
densities, respectively. The thermodynamic fields, tempera-
ture, pressure, and velocity are represented by T, p, and v
respectively. There are two transport coefficients, the viscos-
ity � and the thermal conductivity �.

The RG analysis adds noise terms to the second and third
of Eqs. �1� �the first is an exact identity and therefore has no
noise term�. Using the Green-Kubo relations �27,28�, the
critical exponents are derived from the equilibrium fluctua-
tions of a system at constant temperature. This can be done
without approximations by invoking Galilean invariance and
the condition that equal time correlations must obey equilib-
rium statistical mechanics.

For a crystal, broken symmetries introduce additional
long-lived hydrodynamic modes �23,24,26�. For a d dimen-
sional crystal, the extra d broken symmetry degrees of free-
dom are associated with Ref. �24� the d−1 transverse sound
modes, which become propagating instead of diffusing, and
an extra vacancy diffusion mode �24�. This vacancy diffusion
mode is the only one that survives for d=1. The number of
hydrodynamic equations is increased from three to four. We
are thus led to enquire whether the results of Ref. �16� are
altered for a stiff chain, which can be viewed as a one-
dimensional crystal.

Before doing this, we show that for one-dimensional
monoatomic systems, if the interparticle interaction has only
one minimum, vacancies do not exist. The fluid description
of Ref. �16� is therefore valid even if the interactions are
sufficiently stiff that the particles are almost on a perfect
lattice. This is true for FPU chains.

This result can be shown on physical grounds: if we re-
move a single particle from an otherwise perfect d dimen-
sional crystal, there is a slight distortion in its vicinity, but a
vacancy remains. This vacancy only moves when a neigh-
boring particle hops into the empty site, resulting in very
slow diffusive motion of vacancies �and interstitials� through
the system. In contrast, if a particle is removed from a FPU-
like one-dimensional chain, its neighbors move immediately,
on microscopic—i.e., nonhydrodynamic—time scales to
close the gap. Although the reduction in mass density caused
by removing the particle is not eliminated, but only smeared

out, this is what one would expect, since mass density is
conserved in Eqs. �1�. The extra degree of freedom intro-
duced in the standard hydrodynamic treatment of crystals
�23,24,26,29�, distortions of the broken symmetry, is thus
indistinguishable from density fluctuations, and the fluid de-
scription of Eqs. �1� remains valid.

There are two ways in which the argument of the previous
paragraph can breakdown. First, if the interparticle potential
has multiple minima, it is possible to create a situation where
the separation between adjacent particles is xi+1−xi=a
+	i,nb for some n, and the force on all the particles is zero.
Here a is the lattice constant and b is the separation between
minima of the interparticle potential, in the simplest case
equal to a. The resulting vacancy at site n will diffuse slowly
through the system and is therefore a hydrodynamic mode,
distinct from lattice distortions and momentum which com-
bine to produce longitudinal sound. Second, if the system is
only quasi one dimensional, for example a cylinder, vacan-
cies can be introduced as for d�1. Neither of these excep-
tions applies to FPU chains.

The second exception is, however, applicable to nano-
tubes. In view of their importance, we derive the hydrody-
namic equations for a one-dimensional crystal, modifying
Eqs. �1�, and show that the heat conductivity exponent � is
still not changed. This is because the assumptions that al-
lowed � to be calculated exactly for a fluid are still valid for
the crystal. �Nanotubes have additional transverse and tor-
sional degrees of freedom, but we will argue later that these
do not affect � either.�

A hydrodynamic theory is formed from the continuity
equation of the conserved quantities and the time derivative
of all the broken symmetries. In the case of the one-
dimensional �1D� crystal, the equations are

�t� + �xg = 0,

�tg + �x
 = 0,

�t� + �xj� = 0,

�tu = v + ju, �2�

where u is the displacement and the currents, 
, j�, and ju,
are still to be determined. Galilean invariance demands the
inclusion of the v in the last equation.

Following the methods from Refs. �26,29�, constitutive
equations can be derived from entropy arguments. The first
law of thermodynamics for this system can be rewritten in
terms of densities

T ds = d� − �d � − v dg − hd��xu� , �3�

where s is the entropy density and � is the chemical potential
per unit mass. A uniform translation cannot alter the energy,
therefore energy can only depend on gradients of u. The
conjugate field to �xu is h=�E /���xu� at constant s, �, and g.
The displacement variable also changes the pressure to
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p = − � + Ts + �� + vg + h�xu . �4�

Using these two relations and the continuity equations, we
can derive an entropy “continuity” equation with source
terms,

T��ts + �x�vs +
Q

T
�� = −

Q

T
�xT − �g − �v��x� + �ju

+ v�xu��xh − �
 + h − p − gv��xv ,

�5�

Q = j� − ��g − �v� − 
v + hju − �v + gv2 + hv�xu . �6�

By integrating both sides of Eq. �5� over a large volume
where the entropy “current” vs+Q /T is negligible at the sur-
face, we have an expression for the time derivative of the
total entropy

T
dS

dt
=	 dx�−

Q

T
�xT + ��v − g��x� + �ju + v�xu��xh

− �
 + h − p − gv��xv� . �7�

The constitutive equations for the currents can now
be derived by using the condition of entropy creation,
dS /dt�0 �26�. The equality holds only when there is no
dissipation. Without dissipation, each term of Eq. �7� must
independently be zero, giving the reactive terms of the
currents

g = �v ,

jR
u = − v�xu ,


R = p − h + gv ,

QR = 0,

jR
� = �� + p − h�v . �8�

The −v�xu term in the displacement current does not appear
in the derivation of crystal hydrodynamics from Ref. �26� but
appears to us to be correct. With dissipation, entropy is pro-
duced and the currents have dissipative components

jD
u = �xh − ��xT ,


D = − ��xv ,

QD = − ��xT − �T�xh ,

jD
� = − �� − �h��xT − ��T + h��xh − �v�xv . �9�

The transport coefficients �, �, and  are positive, whereas
the sign of � can be positive or negative. In general, there are
higher order terms in the gradient expansion, but we will
only retain these first order terms �which is valid for small
gradients�. The mass current g, does not have a dissipative
term because it is a conserved density itself.

The displacement field introduces two additional transport
coefficents: one associated to the relaxation of its conjugate
field h and the second due to the possibility of cross coupling
between the heat current and the displacement field �and the
displacement current and temperature field�. This cross cou-
pling is possible because the field and the current have op-
posite signs under time reversal, a necessary condition for
dissipative currents �23�. For this reason, there are no cross
couplings with 
. Using these expressions for the currents in
the continuity equations closes our set of equations

�t� + �xg = 0,

�tg + �x�gv� = − �xp + �xh + ��x
2v + �g,

�t� + �x��� + p − h�v� = ��x
2T + ����xv�2 + v�x

2v� + ���xh�2

+ h�x
2h� + ��T�x

2h − h�x
2T� + ��,

�tu + ��xu − 1�v = �xh − ��xT + �u. �10�

Equations �10� are the full nonlinear hydrodynamic equa-
tions of the 1D crystal. Noise, represented by the �’s, is in-
troduced to the last three equations for the RG analysis.

The hydrodynamic modes and their dispersion relations
can be solved for the linearized theory. The three variable
normal fluid has three modes, a heat diffusion mode and two
propagating sound modes �23�. The additional displacement
variable now introduces another diffusive mode representing
vacancy diffusion. A vacancy diffusion mode is seen in the
longitudinal hydrodynamics of the three dimensional crystal
as well �24,26,29�. In these linearized theories, quantities
such as the susceptibilities and correlations can be calculated
and Green-Kubo relations can be derived �23�. Although the
details of such calculations are different with four hydrody-
namic modes instead of three, Eqs. �10� are clearly still Gal-
ilean invariant, and—when no temperature gradient is im-
posed externally—have equal time fluctuations that are
drawn from the canonical ensemble. As in Ref. �16�, the
various critical exponents are therefore determined and, in
particular, �=1/3.

In summary, for one-dimensional momentum-conserving
crystals �that reach local thermal equilibrium�, Eqs. �1� de-
scribe the hydrodynamics when vacancies are not possible,
as is the case for FPU chains. When vacancies are possible,
Eqs. �10� apply, but the symmetry arguments that determine
�=1/3 for Eqs. �1� are still valid. In the next section, we
numerically show the possible source of the discrepancy be-
tween prior numerical results on FPU-like lattices �3,9–11�
and this exact result.

III. NONEQUILIBRIUM SIMULATIONS

Results of past numerical simulations �3,9–12� consis-
tently measure an exponent larger than 1/3 for FPU-like
chains. Due to the exact derivation of the analytical predic-
tion, the good agreement between this prediction and gas
simulations �5,7,8� �although the issue is not completely
settled �6��, and the well-known problems of convergence in
one-dimensional systems �30�, we conjecture that the FPU
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simulations have not reached the asymptotic large N regime.
Going to larger and larger system sizes to confirm this would
be prohibitive. Instead, we use a tunable model which
smoothly interpolates between the RC gas and the FPU
chain, where this is easier to see.

We introduce FPU-like springs to the random collision
model. As the springs become stiffer, the system continu-
ously evolves from the pure RC gas with �=1/3 to the col-
lisionless FPU chain: from a fluid to a “crystal.” As the
spring constants are increased, we observe that an interme-
diate length scale regime emerges, whereas the large N scal-
ing of � remains 
N1/3.

For the simulations, we numerically integrate a system of
N particles with nearest neighbor interactions. The interac-
tion potential between every pair of particles is of the gen-
eralized FPU form

V�z� =
k2

2
z2 +

k3

3
z3 +

k4

4
z4 + ¯ , �11�

where z=xi+1−xi is the compression �or elongation� of the
spring and xi is the deviation from the equilibrium position
of the ith particle. Collisions can be neglected in the limit
when the lattice constant a is large, but for finite a and finite
temperature, the probability of two particles colliding is non-
zero. When two particles come into contact, z=−a, they un-
dergo a random collision as in Ref. �8�.

For the simulations, we only use terms up to fourth order
in Eq. �11�. In their original work, Fermi, Pasta, and Ulam
�19� noticed that the odd frequency normal modes do not
mix with the even frequency normal modes when the inter-
particle potential is even. To avoid this problem and any
others that may arise from this accidental symmetry of a
FPU-� chain, we use a finite k3 in all of our chain simula-
tions shown in the figures. We have checked that when the
system has an even interparticle potential �k3=0�, the results
do not differ qualitatively from the nonsymmetric case.

Heat baths are connected to the end particles to maintain a
temperature gradient across the system. The scaling of the
conductivity is determined by measuring the size dependence
of the current maintaining a �small� temperature difference
between the baths. For our numerics, the leftmost �i=1� and
rightmost �i=N� particles are connected to Nose-Hoover heat
baths �31,32�. The auxiliary degree of freedom introduced in
the RC model, the transverse momentum, does not couple to
the baths or enter the dynamics except in collisions, and so is
not seen in the pure FPU �collisionless� limit.

We adopt a convention in which the energy contained
in each spring is symmetrically shared by the two particles
attached to it. The first and last springs are only attached
to one particle and a wall, therefore their entire energy
is attributed to the attached particle. Using this convention
for the energy density, the energy current consists of
two parts. The first is an advective part, jadv�x , t�
=�i eivi	�x−xi�t��. The second is piecewise constant and
jumps at each particle with ji+1,i− ji,i−1=−ėi. From this,
ji+1,i=−�1/2��vi+1+vi�V��xi+1−xi�, with j0,1 and jN,N+1 equal
to the energy currents from the reservoirs to the end par-
ticles. Thus the total current flowing through the system is

jN = �
i=1

N

eivi −
1

2�
i=1

N

�xi+1 − xi + a��vi+1 + vi�V��xi+1 − xi� .

�12�

It is possible to show that the time average �jN is equal to
−�a /2��i�vi+1+vi�V��xi+1−xi�. However, with collisions
it is more useful to keep Eq. �12� in its entirety, since
xi+1−xi+a=0 at collisions, where V� is singular. In fact, for
hard sphere particles, jN=�i=1

N eivi.
Numerical integration of this system is complicated by the

combination of collisions and springs. Without springs, the
particles travel freely and a fast event driven simulation can
be implemented �5�. For a collisionless system, the equations
of motion can simply be integrated numerically by standard
algorithms. For our simulations, the fourth order Runge-
Kutta algorithm is used. Because of the occurrence of colli-
sions, our algorithm checks for collisions after every trial
time step. If a collision is seen to have occurred, the trial step
is discarded, and the integrator evolves the system by a
smaller stepsize to the �extrapolated� point at which the two
particles collide. Because of the need for trial steps, integrat-
ing systems with collisions and springs requires substantial
amounts of computational time.

We use a stepsize of dt=0.01 for all simulations and
check that the results do not change for smaller stepsizes. We
allow the system to equilibrate for 
108 steps before mea-
surements are taken. Each measurement consists of the par-
ticle and time averaged current, where a block of 108 time
steps is used for the time average and 105 steps separate each
block. Each data point in Fig. 2 is the mean of many such
measurements and the error bars shown are the root mean
square errors of the block measurements.

The parameters in the model are the masses of the par-
ticles mi, the lattice constant a, the temperatures of the baths
TL and TR, and the spring constants kn in Eq. �11�. Alternat-
ing masses are used due to the fast convergence seen in the
pure RC model for such systems �8�. In particular, we use a
mass ratio of 2.62 and mi=1 for all odd i. The bath tempera-
tures are 1.2 and 1.0 for the left and right baths, respectively.
For these temperatures, we have checked that the system is
in the linear response regime. With the temperatures of the
baths and the masses of the particles fixed at these values, the
collision rate can be altered by changing the lattice constant
and/or spring constants. We have chosen to fix the lattice
constant to a=1/2.

Figure 1 shows the kinetic temperature profile after steady
state is reached for systems of size N=256, showing increas-
ing curvature as collisions decrease. For the pure FPU sys-
tem, the masses of all the particles are chosen to be the same.
This is because with alternating masses, the kinetic tempera-
ture for particles in the pure FPU chain also shows an odd-
even oscillation, indicating that equilibrating the system with
Nose-Hoover baths is problematic. All other systems simu-
lated have alternating masses; as mentioned in the previous
paragraph, this allows the large N limit to be reached faster.
We verify that the temperature profiles for these do not os-
cillate, as shown in Fig. 1.
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After the temperature gradient is established, the energy
current is measured. Figure 2 shows a log-log plot of the
current times the number of particles �jN versus N; the
slope of the plot determines �.

For no springs, the pure RC model has a slope of 
1/3,
similar to the earlier results in Ref. �8�. This asymptotic
value is reached for relatively small systems �N�128�. As
the springs are turned on, an intermediate length scale re-
gime emerges and the asymptotic large N regime moves out,
but the slope in the large N regime is still 1/3. For the stron-
gest springs shown in Fig. 2, the asymptotic regime has

moved out of the range simulated. Figure 2 also shows the
results for a pure FPU chain, which agrees with earlier re-
sults �9–12�. The slope of �0.4 for this system is comparable
to the strong spring system with collisions, supporting the
assertion that this is an intermediate length scale phenom-
enon. As discussed in the previous paragraph, the masses of
all the particles in the pure FPU chain are chosen to be equal.
This is the cause for the different behavior for very small N,
where the slope increases with N instead of decreasing.

IV. DISCUSSION

In the light of the experience with hard particle gases and
the random collision model, it is natural to expect that intro-
ducing extra degrees of freedom would cause FPU chains to
show their large N behavior more rapidly. In this context,
Wang and Li �13� have shown that when one transverse de-
gree of freedom is added to the FPU chain, the conductivity
exponent is numerically seen to be 1/3. It would be interest-
ing to see whether other extensions of the FPU model can
achieve the same result. More ambitiously, it would be very
useful if a criterion could be obtained that would easily de-
termine numerically whether a system reaches local thermal
equilibrium, allowing one to decide whether the hydrody-
namic theory is applicable, although this is probably not an
issue with FPU chains �33�. The intriguing connection �18�
between anomalous diffusion of single particles and trans-
port behavior, which is a collective phenomenon, also de-
serves further investigation.

The study of low dimensional transport is not merely of
theoretical interest; the vast potential applications of real
quasi one-dimensional systems, namely nanotubes, demand
an understanding of their physical properties. Specifically,
research and production of electronic devices at the mi-
crometer and nanometer scale have shown that carbon nano-
tubes may be used in very efficient cooling systems �34�.
Experimentally, the thermal conductivity of nanotubes has
been found to be extremely high �35� which makes nano-
tubes obvious candidates for cooling devices in microelec-
tronics. This potential for applications motivates a theoretical
investigation of the heat transport properties of low dimen-
sional systems. Experimental �35,36� and numerical �37,38�
studies of nanotubes have shown that the phonon contribu-
tion to heat transport is much larger than the electronic con-
tribution, so that the fact that we have only considered lattice
motion in this paper is not a problem.

The two-dimensional nature of the tube allows for the
existence of vacancies. The tubular shape also introduces
other transverse hydrodynamic modes �a broken symmetry
and conserved momentum for torsional and the two trans-
verse motions�, but as mentioned earlier, these modes do not
affect the symmetry arguments, and the heat conductivity
exponent is expected to still be 1/3. The longitudinal hydro-
dynamics for this quasi one-dimensional system is the four
component theory, Eqs. �10�.

There are a few concerns in applying the prediction of
�=1/3. First, on short length scales, the phonon motion is
ballistic. The phonon mean free path in carbon nanotubes is

1 �m �36�, and our discussion in this paper would apply to

FIG. 1. �Color online� The temperature profile for a pure RC
gas, a mixed system with springs and collisions, and a collisionless
chain with springs. The system size N is 256. The spring constants
�k2 ,k3 ,k4� of Eq. �11� are �1,0.1,1�. Dimensionless units are used.

FIG. 2. �Color online� Log-log plot of �jN vs N, where j is the
time-averaged heat current and N is the number of particles, for
systems with different spring strengths. The spring constants
�k2 ,k3 ,k4� of Eq. �11� are specified in the key. The figure also shows
a collisionless FPU chain at the top for comparison. The systems
without springs or weak springs have slopes of 
1/3 at large N.
The slope increases with spring strength and is �0.4 for the pure
FPU system at the largest N shown. When shown, the error bars are
root mean square errors. The plots are shifted for clarity. Dimen-
sionless units are used.
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systems that are larger than this scale. Recent thermal con-
ductivity measurements have only been made on systems
with lengths in this order of magnitude �36�. The unusually
high conductivity in such systems is correctly attributed to
the ballistic transport nature at these scales �36�. There have
yet to be extensive experiments on the length dependence of
� to our knowledge. To test our prediction and measure the
actual heat conductivity exponent, length dependent experi-
ments of long ��1 �m� nanotubes must be done. Second,
even beyond this length scale it is possible �based on what
we have seen for FPU chains� that equilibration is imperfect.
However, this is less likely to be a problem with the extra
transverse modes �13� which are present in a nanotube, and
in any case, would only change � slightly. Third, under
renormalization, the system flows to its fixed point only for
large N. It is not clear what limitation this imposes, but the
nonlinearity in the hydrodynamic equations that causes
anomalous scaling behavior is the advective term, whose
strength is unity and whose effect should therefore be seen
even for small system sizes �39,40�. As noted earlier in this
paper, direct �20� and indirect �21� numerical simulations on
single walled carbon nanotubes at high temperatures have
obtained a heat conductivity exponent of ��1/3, in agree-
ment with our arguments in this paragraph.

In this paper, we have shown analytically that one-
dimensional chains of particles connected with nonlinear
springs have a heat conductivity that diverges as a function
of the chain length N as 
N1/3, which is the same as the
earlier result for hard sphere particles and other fluid sys-
tems. For quasi one-dimensional systems, this result is ob-
tained from the crystalline hydrodynamic equations. It does
not rely on the eventual crossover from a crystal to a fluid
which must happen for any one-dimensional system. For
Fermi-Pasta-Ulam chains and other examples where the in-
terparticle potential has a single minimum, we have obtained
the stronger result that the fluid hydrodynamic theory �16� is
applicable on all length scales for the dynamics, even when
there is excellent static ordering. In the light of these analyti-
cal results, the numerical results on FPU chains that show a
heat conductivity exponent of 
0.4 is probably due to im-
perfect equilibration.
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